Unit 1-1 The Straight Line

The distance formula

$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
derived using Pythagoras’ Theorem.

The mid-point formula

$\mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

The gradient formula

$$
m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Linking the gradient to the tangent $\mathbf{m}_{\mathrm{AB}}=\tan \theta$
Parallel and perpendicular lines Parallel: gradients are equal Perpendicular: product of gradients $=-1$
Lines parallel to OX and OY \qquad gradient $=0$ gradient = undefined

Applications of: $\mathrm{m}_{1} \times \mathrm{m}_{2}=\mathbf{- 1}$	- Finding gradients and equations of perpendicular lines - Finding equations of tangents to circles (perpendicular to radius) - Showing that an angle is a right angle. - Checking out properties of quadrilaterals e.g. rhombus - diagonals bisect at right angles square, rectangle have corners at right angles - Demonstrating symmetry. - Finding equations of parallel and perpendicular lines.
Equation of a straight line $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ where $\mathrm{m}=$ gradient and $\mathrm{c}=\mathrm{y}$-intercept	If you have the equation in this form, then it is easy to sketch the graph: You know the y-intercept: c You know the gradient: m
Collinearity If three points lie on the same straight line, they are said to be collinear.	To prove that 3 points, say P, Q and R are collinear - (i) Show that the gradients PQ and QR are the same (ii) State that the two line segments PQ and QR have a common point Q Failure to state (ii) will cost you marks !!!
Re-arranging equations Equations of straight lines come in many forms: $\begin{array}{ll} y=4 x-5 & y+4 x=-5 \\ y+4 x+5=0 & 2 y+8 x+10=0 \end{array}$ are all the same equation.	Use the simple rules of algebra: - Change side, change sign - Multiply both sides by a constant - Divide both sides by a constant

The Straight Line	
Recognising equations of straight lines Straight lines only have \mathbf{x} and \mathbf{y} appearing with no higher power than 1 .	If there are any terms such as $\mathrm{x}^{2}, \mathrm{x}^{3}, \mathrm{x}^{4}$ or $\mathrm{y}^{2}, \mathrm{y}^{3}, \mathrm{y}^{4}$ terms etc - it is NOT a straight line. e.g. $y=x^{2}+2$ is not a straight line $x-y=3$ is a straight line
Equations of lines parallel to $O X$ and $O Y$	$x=1$ is a line parallel to the y-axis passing through $x=1$ $\mathrm{y}=2$ is a line parallel to the x -axis passing through $\mathrm{y}=2$
The equation of a line of gradient m through a point (a, b) $\begin{gathered} \text { Use } \quad m=\frac{y-a}{x-b} \\ \text { or } \quad y-a=m(x-b) \end{gathered}$ where m is the gradient and (a, b) the point	When you do not have the y -intercept, but only the gradient and a point, you should proceed as follows. Recall the gradient formula, you need two points on the line to obtain the gradient. Since you have the gradient and a point, then to obtain the equation, choose another general point (x, y). Use the gradient formula again in this form. Example: Find the equation of the line with gradient 3 , passing through $\mathrm{P}(1,2)$ $\begin{gathered} 3=\frac{y-2}{x-1} \text { so } 3(x-1)=(y-2) \quad 3 \mathrm{x}-3=\mathrm{y}-2 \\ \text { simplify } \Rightarrow \quad \mathrm{y}=3 \mathrm{x}-1 \quad \text { or } \mathrm{y}-3 \mathrm{x}+1=0 \quad \text { or } \mathrm{y}-3 \mathrm{x}=-1 \end{gathered}$
Intersecting Lines: Treat the equations of the lines as simultaneous equations.	To find the co-ordinates of the point where two lines intersect, treat the equations of the lines as simultaneous equations and solve them. The solution (x, y) is the point of intersection

Some useful bits and pieces:

Median of a triangle - the line drawn from a vertex to the middle of the opposite side.
Altitude of a triangle - the line drawn from a vertex perpendicular to the opposite side. (Measures the height)
Perpendicular bisector of a line is a perpendicular line passing through the mid-point.
Perpendicular at right angles to
Intersect where lines cut each other
Bisect lines cut each other exactly in half.
Locus the path traced out according to some specified condition.
By using this condition, you can find the equation of this path which is called the locus.
Image of a line under reflection, translation or rotation is the position where line moves to under the transformation.

Unit 1 - 2.1 Composite and Inverse Functions

Definition of a function

A function is defined from a set A to a set B as a rule which links each member of A to exactly one member of B.

Notation:

$y=f(x) \quad$ or $\quad f: x \rightarrow y$ (f maps x to $y)$

Domain and Range

The domain of a function is the input - the variable the function operates upon.
The range of a function is the output - the value of the function.

$f(x)=3 x$ or $f: x \rightarrow 3 x$

Domain Range
$g(x)=x^{2}$ or $g: x \rightarrow x^{2}$

Domain of $h(x)=\sqrt{x}$ and $k(x)=\frac{1}{x-1}$

We write this as:
domain of $h(x)$ is $\{x: x \in \mathfrak{R}: \mathbf{x} \geq \mathbf{0}\}$
and:
domain of $\mathbf{k (x)}$ is: $\{\mathbf{x}: \mathbf{x} \in \mathfrak{R}: \mathbf{x} \neq \mathbf{1}\}$
You should always be aware of the danger of dividing by zero.

The largest domain of $h(x)=\sqrt{x}$ is the set of real numbers greater than or equal to zero, since you cannot take the square root of a negative number.
The largest domain of $k(x)=\frac{1}{x-1}$ is the set of real numbers except $x=1$
(since this would make the denominator zero \sim you cannot divide by zero).

$$
\begin{aligned}
& f(x)=\sqrt{(x-1)} \text { is undefined when } \mathrm{x}<1 \\
& \text { (requires square root of negative number) }
\end{aligned}
$$

Functions may be undefined for particular values of $x \quad \sim$ in particular:

- where you would need to take the square root of a negative number
- where you would need to divide by 0

$$
\begin{gathered}
h(x)=\frac{1}{x-3} \text { is undefined when } x=3 \\
\text { (results in division by zero) }
\end{gathered}
$$

Related Functions

Given $f(x)$, what is $f(x+1)$ or $f\left(x^{2}\right)$ or $f(2 x)$ etc.
To find $f(x+1)$,
simply replace the ' x ' in $f(x)$ with ' $x+1$ ' etc. and simplify.

Evaluating functions:

Given $f(x)$, what is $f(1)$ or $f(0)$ or $f(-2)$ etc.
To evaluate a function $f(x)$ at $x=2$ (say), calculate what the value of the function is when you replace x by 2

Example: $f(x)=3 x+1$ what is $f(x+1)$
Solution: $f(x+1)=3(x+1)+1 \Rightarrow 3 x+4$
Example: $h(x)=x^{2}-3 x \quad$ what is $h(2 x)$
Solution: $\mathrm{h}(2 \mathrm{x})=(2 \mathrm{x})^{2}-3(2 \mathrm{x}) \quad \Rightarrow \mathbf{4} \mathrm{x}^{2}-\mathbf{6 x}$
Example: $f(x)=2 x^{2}+3 x$ what is $f(x+1)$
Solution: $\mathrm{f}(\mathrm{x}+1)=2(\mathrm{x}+1)^{2}+3(\mathrm{x}+1) \Rightarrow 2 \mathrm{x}^{2}+\mathbf{7 x}+5$

Example: If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}-1 \quad$ Evaluate $\mathrm{f}(-1)$
Solution: $\quad f(-1)=(-1)^{2}+3(-1)-1 \quad \Rightarrow \quad-3$
Example: If $f(x)=3 x^{3}-5 x+2$ What is $f(a)$
Solution: $\quad f(a)=3 a^{3}-5 a+2$

Unit 1 - 2.1 Composite and Inverse Functions

Recognising the domain and range of a

 function| Domain: | | |
| :--- | :--- | :--- |
| Range: | the input
 the output | Range |
| | | |
| | | |
| Domain | | |

Examples of Range and Domain

Composite Functions

If $f(x)=x-3$ and $g(x)=x^{2}$
Then what is $f(g(x))$
Start from the outside function. $\mathrm{f}(. . .$.
replace the ' x ' with $g(x)$
So we have $f(g(x))=f\left(x^{2}\right)=\left(x^{2}\right)-3$
$\Rightarrow f(g(x))=x^{2}-3$

Domain: Look for the input (the variable in the function - in $f(x)$ the ' x ' axis in $g(t)$ the ' t ' axis). This variable is known as the 'independent variable' since you can choose any value in the domain.
Range: Look for the output or value of the function (this is the value of \mathbf{f} in $f(x)$ or g in $g(t)$). This variable is known as the 'dependent variable', as once you have chosen a value for x or t then f or g is determined by the function.

Domain: $\quad-2 \leq x \leq 3$
Range: $\quad-1 \leq y \leq 6$

$-1 \leq x \leq 4$
$-2 \leq y \leq 5$
$-2 \leq y \leq 5$

NB: in general, $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is NOT the same as $\mathrm{g}(\mathrm{f}(\mathrm{x}))$
which you can demonstrate easily in the example on the left, since:
$\mathbf{g}(\mathbf{f}(\mathbf{x}))=\mathrm{g}(\mathrm{x}-3)=(\mathrm{x}-3)^{2}=\mathbf{x}^{2} \mathbf{- 6 x}+\mathbf{9}$

Example:

$\mathrm{f}(\mathrm{x})=\mathrm{x}+2 \quad \mathrm{~g}(\mathrm{x})=2 \mathrm{x}^{2}$
Then $f(g(x))=f\left(2 x^{2}\right)=2 x^{2}+2$
and $g(f(x))=g(x+2)=2(x+2)^{2}=2 x^{2}+\mathbf{x}+\mathbf{8}$
Example:
$f(x)=\frac{x}{x-1} \quad$ find $\mathrm{f}(\mathrm{f}(\mathrm{x})) \quad$ [Hint: replace the x in $\mathrm{f}(\mathrm{x})$ with $\frac{x}{x-1}$]
so $f(f(x))=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}$ now simplify to get $f(f(\mathbf{x}))=\mathbf{x}$

Functions with inverses

An inverse of a function, is a function that 'undoes' the operation of the original function.

For a function to have an inverse

the members of its domain and range must be in
one-to-one correspondence.

This means that for: every member of the domain, there is exactly ONE corresponding member of the range and for every member of the range there is exactly ONE corresponding member of the domain i.e. No duplicate values.
Look at the following graphs - only one of them has an inverse - can you see which one?

Except for the straight line on the left, in each case, there are two or more values in the domain, which have the same value in the range.

A quick way to check for an inverse on a graph is to slide a ruler horizontally down. If it crosses the graph at more than one point, you have multiple domain members corresponding to one range value.

Unit 1-2.1 Composite and Inverse Functions

Finding inverse functions

If a function f which maps A to B has an inverse function which we call f^{-1}, then f takes x to y and f^{-1} takes y back to x .

$$
\text { So } \quad \mathrm{y}=f(\mathrm{x}) \quad \Leftrightarrow \quad \mathrm{x}=f^{-1}(\mathrm{y})
$$

NB $\quad \Leftrightarrow$ means 'implies and is implied by'
\sim each implies the other - a two way process
Recall $\sin ^{-1}(x), \cos ^{-1}(x)$ and $\tan ^{-1}(x)$ on your calculator - these are the inverse functions of $\sin x, \cos x$ and $\tan x$.

Methods for finding inverse functions

Method 1: Establish what the function does, then undo it.	Example:	Find the inverse of $f(x)=4 x$ The function multiplied the input by 4 , so to undo this we divide by $4 \sim$ hence $\mathrm{f}^{-1}(x)=\frac{x}{4}$
Sometimes it is more difficult to see the inverse:	Example:	Find the inverse of $\mathrm{f}(x)=\frac{3 x-1}{2}$ In this case the number is multiplied by three, one is subtracted, and the result divided by 2 . To undo this - start by: multiplying by two $\begin{aligned} & \Rightarrow \mathrm{f}^{-1}(x)=2 x \text { then add } 1 \\ & \Rightarrow \mathrm{f}^{-1}(x)=2 x+1 \\ & \text { finally divide by } 3 \Rightarrow \mathrm{f}^{-1}(x)=\frac{2 x+1}{3} \end{aligned}$
Method 2: Use the technique: changing the subject of the formula. Summary: 1. Change function to $\mathrm{y}=\ldots$. 2. Change the subject of the formula 3. Switch the x and y placeholders 4. Put back into function notation - replace y with $f^{-1}(\mathrm{x})$	Example:	Find the inverse of $\mathrm{f}(x)=\frac{3 x-1}{2}$ put $y=\frac{3 x-1}{2}$ then $2 y=3 x-1$ and $2 y+1=3 x$ then $x=\frac{2 y+1}{3}$ ~ the ' x ' and ' y ' are simply placeholders so switch the ' x ' and ' y ' labels and change it back to function notation. $\mathrm{f}^{-1}(x)=\frac{2 x+1}{3}$ This method is much easier and less prone to error.

Graphs of Inverse functions.

The graph $y=f^{-1}(x)$ can easily be found by reflecting the graph of $\mathrm{y}=f(\mathrm{x})$ in the line $\mathrm{y}=\mathrm{x}$

Example: $\mathrm{f}(\mathrm{x})=4 \mathrm{x}$ then $f^{-1}(x)=\frac{x}{4}$

Note the reflection in $\mathrm{y}=\mathrm{x}$
This technique is useful for sketching graphs of inverse functions, and indeed can also allow us to deduce what an inverse function might be.

Unit 1-2.2 Algebraic Functions and Graphs

Completing the square
 of the quadratic function

Method summary:

1. Arrange for the coefficient of x^{2} to be 1
2. Form the square with an ' x ' and 'half the coefficient of the x term'
3. Subtract the square of the last term taking care to include brackets
4. then add back the constant term

Example: Complete the square of $2 x^{2}+12 x-5$
step 1. $2\left(x^{2}+6 x\right)-5 \quad$ ensure coefficient of x^{2} is 1
step 2. $\quad 2(x+3)^{2} \quad$ forming the square \sim put x first and and half the coefficient of x in last place.
step 3. $2\left\{(x+3)^{2}-9\right\} \quad$ subtract square of last term and don't forget the brackets !
step 4. $2(x+3)^{2}-18-5 \quad$ add back the constant term then simplify $\quad 2(x+3)^{2}-23$

You can, of course, check by multiplying out:
$2(x+3)^{2}-23 \Rightarrow 2\left(x^{2}+6 x+9\right)-23 \Rightarrow 2 x^{2}+12 x-5$

Maximum and minimum values

Complete the square and obtain a function in the form of: $f(x)=a(x+p)^{2}+q$

if ' a ' is positive

then since $(x+p)^{2}$ is always positive, the minimum value of the function will be when $(x+p)^{2}=0$
Minimum value $=\mathbf{q}$ when $\mathbf{x}=-\mathbf{p}$ if ' a ' is negative
the function can be arranged as:
$f(x)=q+a(x+p)^{2}$ and since ' a ' is negative, the term: $a(x+p)^{2}$ will be subtracted
Maximum value $=\mathbf{q} \quad$ when $\mathbf{x}=-\mathbf{p}$

Sketching the graph of quadratic functions

- Intersection with x, y axes
- turning point
- axis of symmetry

DO NOT PLOT the graph

- you will be awarded NO MARKS for plotting

Sketching graphs of related functions

If you have the graph of a function such as $y=f(x)$, then you can deduce and sketch the graph of a related function such as:

- $y=-f(x)$
- $y=f(-x)$
- $y=f(x \pm a)$
- $y=f(x) \pm k$
or any combination of these transformations.

By completing the square, this allows us to find maximum and minimum values of quadratic functions and the value of ' x ' at which this occurs.

Example: By completing the square,
find the minimum value of $x^{2}+8 x+4$
and the value of x at which it occurs.
Solution: $\quad x^{2}+8 x+4=(x+4)^{2}-16+4=(x+4)^{2}-12$
Minimum value is -12 when $(x+4)^{2}=0$
Minimum value $=-12$ when $x=-4$

Method: To sketch the graph of $y=f(x)$ where $f(x)$ is a quadratic function

1. Find the intersection with the y-axis (by putting $x=0$)
2. Find the intersection with the x-axis (by putting $y=0$) (by solving the equation $f(x)=0 \sim$ finding the roots)
3. Find the turning point by completing the square (incl. y-co-ordinate)
4. Note the turning point is on the axis of symmetry (half-way between the two roots of the equation \sim step 2)
5. Find y co-ordinate of the turning point by substitution in the equation
6. Using these points - sketch the graph - marking in co-ordinate values.
7. Show clearly any working you have done.

Given $\mathrm{y}=\mathrm{f}(\mathrm{x})$ then: (assuming $\mathrm{a}>0$ and $\mathrm{k}>0$)

- $y=-f(x) \quad$ This reflects the graph in the x-axis
- $y=f(-x) \quad$ This reflects the graph in the y-axis
- $y=f(x+a) \quad$ This slides the graph a units to the left
- $y=f(x-a) \quad$ This slides the graph a units to the right
- $y=f(x)+k \quad$ This slides the graph k units upwards
- $y=f(x)-k \quad$ This slides the graph k units downwards

These may be combined, for example:
$y=f(x+a)-k$ would move graph a units to left then k units down.
The +k or -k added onto the end is the last operation to be done
Always show the images of any marked points.

Unit 1-2.2 Algebraic Functions and Graphs

Examples of graphs of related functions

The exponential function and its graph

Any function of the form
$f(x)=a^{x}$ where $a>0$ and $a \neq 1$
is called an exponential function with base a.
The graph of the function has equation $y=a^{x}$
Note: In all cases the graph passes through $(0,1)$ since $a^{0}=1$ for all values of a and the line $\mathrm{y}=0$ is an asymptote to the graph $\mathrm{y}=a^{\mathrm{x}}$

Decreasing and increasing exponential

 functionsFor the function $f(x)=a^{x}$
if $\boldsymbol{a}>1$
then the function is an increasing function.

$$
\text { if } \boldsymbol{a}<\mathbf{1}
$$

then the function is a decreasing function.

Sketching graphs of exponential functions

Method:

The graph must pass through $(0,1)$
Is it decreasing or increasing (is $a>1$ or $a<1$)
Pick a suitable point (e.g. $\mathrm{x}=1$ or $\mathrm{x}=2$) to get
an idea of the steepness
The graph of the function
$f(x)=4^{x} \quad$ is shown here
$f(2)=4^{2}=16 \quad f(1)=4^{1}=4$
$f(0)=4^{0}=1 \quad f\left(\frac{1}{2}\right)=4^{\frac{1}{2}}=2$
$f(-1)=4^{-1}=0.25$

$(-3,-2)$

$(0,1)$ since $a^{0}=1$ for all values of a
and the line $\mathrm{y}=0$ is an asymptote to
the graph $\mathrm{y}=a^{\mathrm{x}}$

Unit 1-2.2 Algebraic Functions and Graphs

Special Logarithms

$$
y=a^{x} \quad \Leftrightarrow \quad x=\log _{a} y
$$

$$
\log _{a} 1=0
$$

(logarithm of 1 to any base is 0)

$$
\log _{a} a=1
$$

(logarithm of a number to that base is 1)

Sketching graphs of Log functions

Using $\log _{a} 1=0$
and $\quad \log _{a} \mathbf{a}=1$
we can obtain two points on the graph.

When plotting $\log _{a}(x-2)$ or similar
Choose a value of x to make $(x-2)$ equal to 0
Choose a value of x to make $(x-2)$ equal to a

In all cases use the two special logarithms

$$
\begin{aligned}
& \log _{a} 1=0 \\
& \log _{a} a=1
\end{aligned}
$$

Choose values of x as appropriate

Using the form: $y=a^{x} \Leftrightarrow x=\log _{a} y$
(i) $1=a^{0} \quad$ i.e. $y=1 \quad$ when $x=0 \quad \Leftrightarrow \quad 0=\log _{a} 1$
(ii) $\quad \mathrm{a}=\mathrm{a}^{1} \quad$ i.e. $\mathrm{y}=\mathrm{a} \quad$ when $\mathrm{x}=1 \quad \Leftrightarrow \quad 1=\log _{\mathrm{a}} \mathrm{a}$

Example: Sketch $y=\log _{3} x$
$\log _{3} 1=0$ giving point $(1,0)$
$\log _{3} 3=1$ giving point $(3,1)$

Example: Sketch $\mathrm{y}=\log _{2}(\mathrm{x}-3)$
$\log _{2} 1=0$
$\Rightarrow(\mathrm{x}-3)=1$
so $\mathrm{x}=4$ giving point $(4,0)$
$\log _{2} 2=1$
$\Rightarrow(x-3)=2$
so $\mathrm{x}=5$ giving point $(5,1)$

Note this confirms our previous knowledge of related functions
$y=\log _{2}(x-3)$ is simply the graph of $y=\log _{2} x$ shifted 3 units to the right.
$y=f(x)$ and the related function is $y=f(x-3)$
Note also the asymptote at $x=3$

Example:

A sketch of the graph $\mathrm{y}=\mathrm{a} \log 4(\mathrm{x}+\mathrm{b})$ is shown.
Find the values of a and b
$(-2,0)$ lies on the curve, so
$0=a \log _{4}(-2+b)$
so $\mathbf{b}-2=1$, hence $\mathbf{b}=\mathbf{3}$
$(1,5)$ lies on the curve, so

$5=\mathrm{a} \log _{4}(1+\mathrm{b}), \quad$ since $\mathrm{b}=3$
$5=\mathrm{a} \log _{4}(4)$, now $\log _{4} 4=1 \quad$ so $\mathbf{a}=5$

Example:

Example:
Sketch $y=\log _{3}\left(\frac{1}{x}\right)$
Choose $\mathrm{x}=1$
$\Rightarrow \quad \log _{3} 1=0$ giving point $(1,0)$
Choose $\mathrm{x}=\frac{1}{3}$
$\Rightarrow \quad \log _{3} 3=1 \quad$ giving point $(1 / 3,1)$

Note that the term $\frac{1}{x}$ results in a decreasing function
Consider what happens for large x and small x approaching zero

Unit 1-2.3 Trigonometric Functions and Graphs

Radian measure An angle of one radian is the angle subtended at

 the centre of a circle by an arc of length equal to its radius.| $\boldsymbol{\pi}$ radians $=\mathbf{1 8 0}^{\circ}$ |
| :---: |
| $\mathbf{2 \pi}$ radians $=\mathbf{3 6 0}^{\circ}$ |
| Degrees Radians
 30 $\frac{\pi}{6}$
 45 $\frac{\pi}{4}$
 60 $\frac{\pi}{3}$
 90 $\frac{\pi}{2}$
 120 $\frac{2 \pi}{3}$
 135 $\frac{3 \pi}{4}$
 180 π |

Exact values for sin, cos and tan

Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
Degrees	30°	45°	60°
\sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

You should be familiar with this table, if you cannot memorise it, learn how to create it.

Recall the use of Pythagoras and SOHCAHTOA
for obtaining exact values for $30^{\circ}, 45^{\circ}$ and 60°.

1

Use an equilateral triangle of side 2 units.
Draw in the perpendicular from base to vertex.
giving 2 right angled triangles with angles of 30° and 60° and each with a base of 1 and hypotenuse of 2 .

Again use Pythagoras to calculate the altitude as $\sqrt{3}$
Hence $\sin 30^{\circ}=\frac{1}{2} \quad \cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \tan 30^{\circ}=\frac{1}{\sqrt{3}} \quad$ etc.
Look for the symmetry. You must be able to work in radians as well as degrees.

- Consider the function $\mathbf{f}(\mathbf{x})=\mathbf{2 + \boldsymbol { \operatorname { c o s } } \mathbf { x }}$
- The maximum value will occur when $\cos \mathbf{x}$ is a maximum
- The maximum value of $\cos x$ is 1 when $x=0^{\circ}$ or 360° (or 0 and 2π radians)
- So the maximum value of the function will be $2+1=3$
- Similarly the minimum value of the function will be $2-1=1$ when $\mathrm{x}=180^{\circ}$ (or π radians).
- In all cases look at when the sin or cos part of the function is at a maximum or minimum.

Unit 1-2.3 Trigonometric Functions and Graphs

Angles greater than $\mathbf{9 0}{ }^{\circ}$

S	A
T	C

shows where sine, cosine and tangent are positive.

Sketching Trigonometric Graphs

$$
y=a \sin n x \quad y=a \cos n x
$$

$\mathbf{a}=$ amplitude (max and min values of y)
$\mathbf{n}=$ number of waves in 360° or 2π
period of the graph is $\frac{360}{n} \circ$ or $\frac{2 \pi}{n}$ radians

Solving Trigonometric Equations

All these equations can ultimately be resolved into the form

$$
\begin{gathered}
\sin (\ldots . .)=\text { constant } \\
\cos (\ldots \ldots . .)=\text { constant } \\
\tan (\ldots \ldots . .)=\text { constant }
\end{gathered}
$$

Once you have reached this form, you can generally find 2 solutions using ‘ASTC’.

Type 1: Solve $2 \boldsymbol{\operatorname { s i n }} \mathrm{x}=1 \quad 0 \leq \mathrm{x} \leq 360^{\circ}$
Type 2: Solve $\sqrt{2} \cos \boldsymbol{\theta}+\mathbf{1}=\mathbf{0} 0 \leq \mathrm{x} \leq 2 \pi$
Type 3: Solve $\boldsymbol{\operatorname { s i n }} 3 \mathbf{x}=\mathbf{- 1} \quad 0 \leq x \leq 360^{\circ}$

Type 4: Solve $2 \sin ^{2} \mathbf{x}=1 \quad 0 \leq \mathrm{x} \leq 360^{\circ}$

Type 5: Solve $4 \sin ^{2} \mathrm{x}+\mathbf{1 1} \sin \mathrm{x}+\mathbf{6}=\mathbf{0}$ $0 \leq x \leq 2 \pi$

Type 6: Solve $\sin ^{2} x-\cos x=1$ $0 \leq \mathrm{x} \leq 360^{\circ}$

Type 7: Solve $\sin (2 x-20)^{\circ}=\mathbf{0 . 5}$ $0 \leq x \leq 360^{\circ}$

Recall 'All Sinners Take Care’

When considering angles in the $2^{\text {nd }} 3^{\text {rd }}$ and $4^{\text {th }}$ quadrants, remember the acute angle is always between the rotating arm and the \mathbf{x}-axis.
Example:
$\sin 135^{\circ}$ related acute angle $=45^{\circ} \sim \sin 135^{\circ}=+\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan \frac{11 \pi}{6}$ related acute angle $=\frac{\pi}{6} \sim \tan \frac{11 \pi}{6}=-\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$

Reminder: when you have for example: $\cos \theta=-0.5$ or $\tan \theta=-0.7$
Ignore the negative sign when getting the acute angle on your calculator.
Use the negative sign to determine which quadrants the solutions are in.

However - first you have to get the equation into this form !
See below for strategies for the different types of equations.

Divide by $2 \Rightarrow \sin x=\frac{1}{2}$ obtain two solutions (30° and 150°)
Re-arrange $\sqrt{ } 2 \cos \theta=-1$ hence $\cos \theta=-\frac{1}{\sqrt{2}}$
The range becomes $0 \leq 3 x \leq 1080^{\circ}$ Now $\sin ()=-1$ at 270°
but to cover the range we need $270^{\circ}, 270^{\circ}+360^{\circ}, 270^{\circ}+720^{\circ}$
solutions are: $\mathrm{x}=\mathbf{9 0 ^ { \circ }}, \mathbf{2 1 0 ^ { \circ }}, \mathbf{3 3 0 ^ { \circ }}$
In general if you have $\sin n x, \cos n x, \tan n x$ then multiply your range by n
Re-arrange to get: $\sin ^{2} x=\frac{1}{2} \quad$ Taking square roots gives $\quad \sin x= \pm \frac{1}{\sqrt{2}}$
Note now there are $\mathbf{2}$ equations to solve and you will obtain 4 solutions.
solutions are: $x=45^{\circ}, 135^{\circ}$ and $x=225^{\circ}$ and 315°

A quadratic equation in $\sin x:$ Factorising $\Rightarrow(4 \sin x+3)(\sin x+2)=0$ reduces to 2 simpler equations. Solutions are: $\mathbf{x}=\mathbf{3 . 9 9}$ or 5.43 radians Note that $\sin \mathrm{x}+2=0$ has no solutions so discard it.

Use $\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$ (see table right)
Replace $\sin ^{2} \mathrm{x}$ with $1-\cos ^{2} \mathrm{x}$
Now a quadratic in $\cos x$: $1-\cos ^{2} x-\cos x=1$
Re-arrange and factorise: $\quad \cos x(\cos x+1)=0$
$\sin ^{2} x+\cos ^{2} x=1$
$\sin ^{2} x=1-\cos ^{2} x$
$\cos ^{2} \mathrm{x}=1-\sin ^{2} \mathrm{x}$
solutions: $\mathrm{x}=\mathbf{9 0 ^ { \circ }}$ and 270° or $\mathrm{x}=\mathbf{1 8 0 ^ { \circ }}$
Range becomes $0 \leq \mathrm{x} \leq 720^{\circ}$
Now $\quad \sin (\ldots)=.0.5 \Rightarrow$ an acute angle of 30°
so we have $(\ldots \ldots .)=.30^{\circ}$ or 150° or 390° or 510° (giving four solutions)
This gives four equations: like $2 x-20=30,2 x-20=150$, etc.
Solutions: $\quad x=25^{\circ}, \mathbf{8 5}, \mathbf{2 0 5}, \mathbf{2 6 5}$

Unit 1 - 3.1 Introduction to Differentiation

The limit formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We define this limit as $\mathrm{f}^{\prime}(\mathrm{x})$ this is known as the gradient function or derived function We have differentiated $f(x)$ and obtained $f^{\prime}(x)$. $f^{\prime}(x)$ is the derivative of $f(x)$.
This is a function that allows us to calculate the gradient at any point x on the curve.

Calculating the gradient
 at a point $P(x, y)$ on the curve $y=f(x)$

- Differentiate the function $f(x)$ to get $f^{\prime}(x)$
- Evaluate function $\mathrm{f}^{\prime}(\mathrm{x})$ at point $\mathrm{P}(\mathrm{x}, \mathrm{y})$

Differentiation relates primarily to the gradient of a graph or function (generally a curve).
A graph is a pictorial representation of a function.
We are interested in the gradient of a curve (function), because the gradient is a measure of the rate of change of the function.

The gradient of a curve is continually changing as you move along the curve.
The gradient of the curve at point P is defined as the gradient of the tangent to the curve at P .

Example: Find the gradient on the curve $f(x)=2 x^{2}+3 x+5$ at $P(-2,1)$
Solution: Differentiate $\Rightarrow f^{\prime}(x)=4 x+3$
Evaluate $\mathrm{f}^{\prime}(-2)=4(-2)+3 \Rightarrow \mathrm{f}^{\prime}(-2)=-5$
Gradient at $\mathbf{P}(-2,1)=-5$

Rules for differentiation:

$\mathbf{f}(\mathbf{x})$	$\mathbf{f}^{\prime}(\mathbf{x})$
x^{n}	$\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
c (constant)	0
$\mathrm{ax} \mathrm{(a} \mathrm{is} \mathrm{a} \mathrm{constant)}$	a
a x	$\mathrm{anx} \mathrm{x}^{\mathrm{n}-1}$
$\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime}(\mathrm{x})$
$3 \mathrm{x}^{2}+2 \mathrm{x}+1$	$6 \mathrm{x}+2$

These rules work for any power of n - positive or negative, whole number or fractional.

General Rule:

Put the power in front (multiply), and decrease the power by 1.

IMPORTANT:

You must have the function $f(x)$ as a polynomial, a series of powers of x.
You cannot differentiate fractions, brackets or anything else directly at present.

Indices:

Rules of indices
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{n}\right)^{m}=a^{n m}=\left(a^{m}\right)^{n}$

Recall rules of indices:
Also recall meaning of fractional and negative indices.

$$
\begin{array}{lll}
\mathrm{x}^{-1}=\frac{1}{\mathrm{X}} & \mathrm{x}^{-\mathrm{n}}=\frac{1}{\mathrm{x}^{\mathrm{n}}} & x^{\frac{m}{n}}=(\sqrt[n]{x})^{m}=\sqrt{x^{m}} \\
x^{\frac{1}{n}}=\sqrt[n]{x} & x^{-\frac{1}{n}}=\frac{1}{\sqrt[n]{x}} & x^{-\frac{m}{n}}=\frac{1}{(\sqrt[n]{x})^{m}}=\frac{1}{\sqrt[n]{x^{m}}} \\
\frac{1}{2 \mathrm{x}^{\mathrm{n}}}=\frac{1}{2} \cdot \frac{1}{x^{n}}=\frac{1}{2} x^{-n} & \frac{3}{4 \mathrm{x}^{\mathrm{n}}}=\frac{3}{4} \cdot \frac{1}{x^{n}}=\frac{3}{4} x^{-n}
\end{array}
$$

Leibnitz Notation: $\frac{d y}{d x}$ or $\frac{d}{d x}\left((f(x))\right.$ or $\frac{d f}{d x}$
Newton's notation: $\quad f^{\prime}(x)$ or $y^{\prime}(x)$ or y^{\prime}

Use Leibnitz or Newtons notation depending upon the wording of the question. Both notations are equivalent.

Unit 1 - 3.1 Introduction to Differentiation

Changing functions to straight line form - or simple index form.

Fractional functions:

either:

- express in index notation, or
- put into separate fractions

Finding the gradient of the tangent

 to a curve at $\mathbf{P}(\mathbf{a}, \mathrm{b})$:- Differentiate to get $\frac{d y}{d x}$ or $\mathrm{f}^{\prime}(\mathrm{x})$
- Evaluate gradient function $\frac{d y}{d x}$ at P

Finding the equation of the tangent:

- Find gradient.
- Find the y co-ordinate of point if not given.
- Use gradient formula for equation:

$$
\frac{y-y_{1}}{x-x_{1}}=m
$$

Examples:
Type 1: $\mathrm{f}(\mathrm{x})=x^{2}+\frac{3}{x} \quad$ change to $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}^{-1}$ to differentiate
Type 2: $\mathrm{f}(\mathrm{x})=\frac{x^{4}+2 x^{2}+3}{x}$ change to $\mathrm{f}(\mathrm{x})=\frac{x^{4}}{x}+\frac{2 x^{2}}{x}+\frac{3}{x}$
then simplify to $x^{3}+2 x+3 x^{-1}$ (straight line form)

Example: Find the gradient of the tangent to $f(x)=3 x^{3}-5 x+2$ at $P(2,1)$
Solution: \quad Differentiate $\Rightarrow f^{\prime}(x)=9 x^{2}-5$
Evaluate at $P(2,1)$
$f^{\prime}(2)=9(2)^{2}-5=36-5=31$
Hence gradient of tangent at $\mathbf{P (2 , 1)}=31$

Find gradient by differentiation and evaluation.
Find the y co-ordinate of the point by putting x co-ordinate into original equation.
Use formula for the equation: $\frac{y-y_{1}}{x-x_{1}}=m$ or $y-a=m(x-b)$
Example: Find equation of the tangent to $\mathrm{y}=\mathrm{x}^{2}+3$ at $\mathrm{x}=2$
Solution: Gradient of tangent is $\frac{d y}{d x}=2 x$ when $\mathrm{x}=2$ gradient $=4$ When $\mathrm{x}=2, \mathrm{y}=(2)^{2}+3=7$
Hence equation is: $y-7=4(x-2) \Rightarrow \mathbf{y}-\mathbf{4 x}+\mathbf{1}=\mathbf{0}$
Find point on curve where tangent has a
given gradient (say gradient to be 3)

- Find gradient function by differentiation
- Put gradient function $=3$; solve equation.
- Get y co-ordinate from original equation.

Graphs of derived functions

The derived function $\mathrm{f}^{\prime}(\mathrm{x})$ is the function resulting from differentiating $f(x)$

To sketch the derived function:

Method:

Step 1. Mark the zeros on the x -axis
Note sign of gradient either side of zeros.

Step 2. Sketch the derived function - it must be below the x axis where the gradient was negative and above the x axis where the gradient was positive What will fit?

Example: Find the point on the curve $y=2 x^{2}+1$ where gradient $=5$
Solution: Gradient function of curve is $\frac{d y}{d x}=4 x+1$
When gradient $=5, \quad \frac{d y}{d x}=5 \quad$ thus, $4 \mathrm{x}+1=5, \quad$ so $\mathrm{x}=1$
When $\mathrm{x}=1, \quad \mathrm{y}=2(1)^{2}+1=3 \quad$ Hence point is $(1,3)$
Step 1. Locate the point(s) where the gradient of the function is ZERO (i.e. a turning point) - mark these points on the x -axis.

Note either side of the point whether gradient is positive or negative
Step 2. Sketch the derived function - it must be below the x axis where you deduced the gradient was negative and above the x axis where the gradient was positive - What will fit ?
Consider the form of the derived function by differentiation

- is it a straight line, quadratic, cubic etc.

Unit 1 - 3.2 Using Differentiation

Finding Stationary points and their nature

- Differentiate to find the gradient function
- For a stationary point, $d y / d x$ or $f^{\prime}(x)=0$
- Solve the equation to find the x co-ordinate(s)
- Substitute into the original equation $y=$ or $f(x)=$ to get the y co-ordinate(s)
- Determine the nature of each stationary point using a table of signs as shown in the example.
When checking for the nature - use any factorisation that you have for $\frac{d y}{d x}$

If you try to deduce the signs from a complicated expression, you will probably get it wrong.

In each case you are looking either to the left or the right of the stationary point.

Minimum S.P. have signs: $-0+$
Maximum S.P. have signs: $+0-$
Points of Inflexion have signs: $-0-$ or $+0+$

| |
| :--- | | The interval on which the function is |
| :--- |
| increasing or decreasing. |

To determine the interval on which the function is increasing or decreasing, you need to look at the stationary points and the gradient on each side of them.
Where the gradient is positive, the function is increasing.
Where the gradient is negative,
the function is decreasing.
Where the gradient is zero,
then the function is stationary!

Maximum and minimum value on a closed interval

If a closed interval is specified for a graph, then the maximum and minimum value of the function will either be at a stationary point OR one of the end points of the graph.

Example: Find the stationary points of $y=x^{3}+3 x^{2}-9 x+1$ and determine their nature.

Differentiate to get: $\frac{d y}{d x}=3 x^{2}+6 x-9$
For a s.p. $\frac{d y}{d x}=0$ so $3 x^{2}+6 x-9=0 \quad$ or $\mathrm{x}^{2}+2 \mathrm{x}-3=0$
hence $(x-1)(x+3)=0 \quad$ so s.p. occur when $x=1$ or $x=-3$
now find y co-ordinates: \quad when $x=1 \quad y=(1)^{3}+3(1)^{2}-9(1)+1=6$

$$
\text { when } x=-3 \quad y=(-3)^{3}+3(-3)^{2}-9(-3)+1=28
$$

So stationary points are $(\mathbf{1}, \mathbf{6})$ and $(-3,28)$
Now check for their nature. Using the factorisation in dy/dx

Hence stationary points are: $(\mathbf{1}, \mathbf{6})$ minimum and $(-3,28)$ maximum

In the above example:
The function is increasing for: $\mathrm{x}<-3$ and $\mathrm{x}>1$
and decreasing for: $-3<x<1$

You need the stationary points to determine the length of the interval.

To determine the maximum and minimum value on a closed interval:

- Find the stationary points of the function
- If any lie outside the interval, discard them
- Check the S.V. of each stationary point (i.e. y co-ordinate)
- Check the value of the function at each end of the interval.
- State the maximum and minimum value of the function on this interval.

Example: Find the maximum and minimum value of $y=x^{3}$ on $[1,3]$
$\frac{d y}{d x}=3 x^{2} \quad$ for a S.P. $\frac{d y}{d x}=0 \quad$ so $3 x^{2}=0$ hence $\mathrm{x}=0$ (outside of interval)
Now check ends of interval [1,3] $\mathrm{y}(1)=1$ and $\mathrm{y}(3)=27$
Hence on the interval [1, 3], $y=x^{3}$ has max value of 27 and min value of 1

Unit 1 - 3.2 Using Differentiation

Curve sketching

A practical application of maximum and minimum.

- Points of intersection with x and y axes:
- Find stationary points using differentiation
- Find y co-ordinates by substitution
- Nature of S.P. using table of signs.
- Behaviour for large values of + and $-x$
- Any useful points on the graph.
- Sketch (DO NOT PLOT) the graph.

Problem solving

- Mathematical modelling.
- Use constraints to make an equation.
- Look for a maximum or minimum.

Method:

Make an equation to represent the model - you will have two unknowns at this stage.
Your constraint will connect these two unknown variables.
Using your constraint, obtain a function with only one variable.
Differentiate and find any stationary points generally there will only be one.
Find the nature of the stationary point (max or min) using table of signs.

The value of stationary point will cause the model to have a maximum or minimum value.
Interpret your solution into the form of the question.

Rate of Change

The rate of change of y with respect to x is given by: $\frac{d y}{d x}$
Negative rate of change means function is decreasing

Positive rate of change means that it is increasing.

Note: When using velocity and acceleration remember that they are vectors and have direction as well as magnitude. When using them vertically as in height problems, the greatest height reached is when the velocity $=\mathbf{0}$ When the acceleration $=\mathbf{0}$, the object is moving at constant velocity.

Unit 1-4 Sequences

Formula for $\mathbf{n}^{\text {th }}$ term

Given a formula for the $\mathrm{n}^{\text {th }}$ term, we can calculate all the terms.

Conversely given a sequence, we can find a formula for its $\mathrm{n}^{\text {th }}$ term.
e.g. $\quad u_{n}=3 n+2$
start with $n=1$ giving $u_{1}=5, u_{2}=8, u_{3}=11$ etc.
e.g. $5,9,13,17,21$....

It goes up in multiples of 4 (we add 4 on each time)
so start off with $\mathrm{u}_{\mathrm{n}}=4 \mathrm{n}$
However it is not the 4 times table - it is offset by 1 more
So the nth term is given by $u_{n}=4 n+1$
Now check to see if this generates the sequence.

Recurrence Relations

If we are given the first term of a sequence and a rule for calculating u_{n+1} from u_{n}, we can calculate all of its terms.
The recurrence relation is the rule for calculating the $n+1^{\text {th }}$ term from the $n^{\text {th }}$ term.
e.g. If the recurrence relation is $u_{n+1}=u_{n}+7$ all this means is:- add 7 to the any term in the sequence to get the next term in the sequence.

If the $2^{\text {nd }}$ term is 12 i.e. $u_{2}=12$ then $u_{3}=u_{2}+7$ or $u_{3}=12+7=19$
In general - given the first term and the recurrence relation, we can generate all the terms of the sequence:
e.g. $u_{1}=5$ and $u_{n+1}=2 u_{n}+3$

This will generate the sequence: $5,13,29,61, \ldots .$.
Conversely, given the sequence, it may be possible to define it by giving the first term and the recurrence relation (the relationship between u_{n+1} and u_{n}).
e.g. $13,10,7,4, \ldots$... first term is 13
rule is: subtract 3 to get next term. so: $u_{1}=13 \quad u_{n+1}=u_{n}-3$

Example: A mushroom bed has 60 mushrooms. Each morning the number has doubled, and the gardener picks 50 mushrooms.

Start from day $n-$ there are u_{n} mushrooms
Look at the next day - there are twice as many $2 \mathrm{u}_{\mathrm{n}}$
but the gardener has picked 50
so there will be $2 \mathrm{u}_{\mathrm{n}}-50$ mushrooms.
So: $\quad u_{n+1}=2 u_{n}-50$
Example: There are 3 trees in Jim's garden.
He plants 2 more trees each day for the next 6 days.
Take u_{n} trees to be the number of trees after n days,
(This means that that original number of 3 trees is $\mathrm{u}_{0} \sim \mathrm{u}_{0}=3$)
Then: $\quad u_{n+1}=u_{n}+2$

Linear Recurrence Relations

These are of the form: $\mathbf{u}_{\mathbf{n} \mathbf{+ 1}}=\mathbf{m u}_{\mathbf{n}}+\mathbf{c}$
where m and c are constants
Special sequences are obtained if $\mathrm{m}=1$ or $\mathrm{c}=0$
(compare with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$).
if $m=1$ you get an arithmetic sequence
if c $=0$ you get a geometric sequence

Arithmetic Sequences

If $m=1$ in the recurrence relation
$u_{n+1}=m u_{n}+c$ then $\mathbf{u}_{\mathbf{n + 1}}=\mathbf{u}_{\mathbf{n}}+\mathbf{c}$
the difference between successive terms in the sequence is the constant c .
This is an arithmetic sequence.
We are just adding on ceach time.
e.g. $\quad u_{n+1}=u_{n}+2$
if $u_{1}=3$ then the sequence generated is $3,5,7,9, \ldots$.
Note the constant 2 being added on for each successive term.

Unit 1-4 Sequences

Geometric Sequences

If $\mathrm{c}=0$
in the recurrence relation $u_{n+1}=m u_{n}+c$
then $\quad \mathbf{u}_{\mathbf{n}+\mathbf{1}}=\mathbf{m} \mathbf{u}_{\mathbf{n}}$
\sim each term is multiplied by a constant \mathbf{m}
In other words the ratio of successive terms is constant.
This is an geometric sequence.
We are just multiplying by m each time..
e.g. $u_{n+1}=3 u_{n} \quad$ if $u_{1}=2$ then the sequence generated is $2,6,18,54, \ldots \ldots$

Examples of Geometric Sequences

Example 1:

Every year a typical bag of groceries rises in price by 5%. Its initial value V_{0} is $£ 20$
Describe the price by a recurrence relation.

Example 2:

There are 40 fish in a pond, 10% are eaten but 3 new ones are born every day.
Describe this by a recurrence relation.

Example 3:

A sequence is generated by the recurrence relation, the $n^{\text {th }}$ term being u_{n}
$\mathrm{u}_{\mathrm{n}+1}=4 \mathrm{u}_{\mathrm{n}}-2 \quad \mathrm{u}_{1}=2$

When expressing a recurrence relation - write down the relation AND the first term u_{0} or u1 as appropriate.

Current years price is 5% more than last year
$\mathrm{V}_{\mathrm{n}+1}=1.05 \mathrm{~V}_{\mathrm{n}}$ and $\mathrm{V}_{0}=20$

If 10% are eaten then 90% are left for the next day
The recurrence relation is $u_{n+1}=0.9 u_{n}+3$ where $u_{0}=40$
(u_{0} in this case because it is an initial condition).

The sequence generated is: $2,6,10,14, \ldots$.
Note that a term u_{0} would not make sense in this example.

In general u_{0} is an initial condition before the recurrence relation starts.
u_{1} is the first term of the recurrence relation.
Effectively it depends upon how you define u_{n}

Examples forming recurrence relations:

u_{n} is the number of bacteria in a culture after n hours. At present there are 100 but their number doubles after each hour.

An office plant is 150 cm tall and its height increases each month by 5% of its height at the beginning of the month.
H_{n} is the height after n months.
Jim is a salesman, travelling 300 km per week. His mileometer reads 9350 when he begins R_{n} is the reading after n weeks.

$$
\mathbf{u}_{\mathrm{n}+1}=2 \mathbf{u}_{\mathrm{n}} \quad \mathbf{u}_{0}=100
$$

$$
\mathrm{H}_{\mathrm{n}+1}=1.05 \mathrm{u}_{\mathrm{n}} \quad \mathrm{H}_{0}=150 \mathrm{~cm}
$$

$$
\mathbf{R}_{\mathrm{n}+1}=\mathbf{R}_{\mathrm{n}}+300 \quad \mathbf{R}_{\mathbf{0}}=\mathbf{9 3 5 0}
$$

Unit 1-4 Sequences

Finite and Infinite Sequences

A finite sequence has a finite number of terms there are a fixed number of terms in the sequence.
An infinite sequence has an unlimited number of terms, they continue on forever.
If the $\mathrm{n}^{\text {th }}$ term tends to a limiting value as n gets very large (i.e. n tends to infinity $n \rightarrow \infty$) the sequence is convergent - it converges to a limit.

The Geometric Sequence

If a geometric sequence is written $u_{n+1}=\mathrm{ru}_{\mathrm{n}}$ where r is the multiplier each time and $\mathrm{u}_{1}=\mathbf{a}$ (the first term)
\{we call \mathbf{r} the common ratio $\}$
We can write the sequence out as:
a, ar, ar^{2}, $a r^{3}$, $\operatorname{ar}^{\mathrm{n}-1}\left(\mathrm{n}^{\text {th }}\right.$ term $)$

Define the sum to n terms, S_{n} as
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+\mathrm{ar}^{3}+\ldots \ldots \ldots+\mathrm{ar}^{\mathrm{n}-1}$
Then: $\quad S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
If $\quad-1<r<1 \quad$ as $n \rightarrow \infty \quad r^{n} \rightarrow 0$
and so the sum S_{n} will tend to a limit.
The limit of S_{n} as $\mathrm{n} \rightarrow \infty$ will be $S_{n}=\frac{a}{1-r}$

Examples:

1. $\quad u_{n}=2-\frac{1}{n^{2}} \quad$ as $\mathrm{n} \rightarrow \infty \quad \frac{1}{n^{2}} \rightarrow 0$ and so $\mathrm{u}_{\mathrm{n}} \rightarrow 2$
2. $\quad u_{n}=1-(0.5)^{n} \quad$ as $\mathrm{n} \rightarrow \infty \quad(0.5)^{n} \rightarrow 0$ and so $\mathrm{u}_{\mathrm{n}} \rightarrow$
3. $u_{n}=\frac{2 n+1}{n}$ we need to re-arrange this to:
$u_{n}=\frac{2 n}{n}+\frac{1}{n} \Rightarrow u_{n}=2+\frac{1}{n}$ and as $\mathrm{n} \rightarrow \infty \quad \mathrm{u}_{\mathrm{n}} \rightarrow 2$
4. $\quad u_{n}=\frac{n}{n+1}$ slightly trickier here the following technique is useful: the denominator n may be written as $\mathrm{n}=\mathrm{n}+1-1$
so we get: $u_{n}=\frac{n+1-1}{n+1} \Rightarrow u_{n}=\frac{n+1}{n+1}-\frac{1}{n+1} \Rightarrow u_{n}=1-\frac{1}{n+1}$
and so as $\quad n \rightarrow \infty \quad \mathrm{u}_{\mathrm{n}} \rightarrow 1$

Can we find an expression to allow us to calculate S_{n} easily ?
This time we use a different technique. Multiply the series by r , giving us:

$$
\mathrm{rS}_{\mathrm{n}}=\mathrm{ar}+\mathrm{ar}^{2}+\mathrm{ar}^{3}+\ldots \ldots \ldots+\mathrm{ar}^{\mathrm{n}}
$$

Now subtract this series from the original one, term by term,
$\mathrm{S}_{\mathrm{n}}-\mathrm{rS}_{\mathrm{n}}=\mathrm{a}+\underline{\mathrm{ar}}+\underline{\mathrm{ar}^{2}}+\underline{\mathrm{ar}^{3}}+\ldots \ldots \ldots .+\underline{\mathrm{ar}^{\mathrm{n}-1}}$

$$
-\left\{\underline{\mathrm{ar}}+\underline{\mathrm{ar}}^{2}+\underline{\mathrm{ar}}^{3}+\ldots \ldots \ldots .+\mathrm{ar}^{\mathrm{n}}\right\}
$$

Notice that all the underlined terms cancel out, leaving us with:
$\mathrm{S}_{\mathrm{n}}-\mathrm{rS}_{\mathrm{n}}=\mathrm{a}-\mathrm{ar}^{\mathrm{n}} \quad$ which we can factorise as $S_{n}(1-r)=a\left(1-r^{n}\right)$
re-arrange to get: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$ a is the first term and \mathbf{r} is the common ratio.

Unit 1-4 Sequences

The linear recurrence relation

$\mathbf{u}_{\mathbf{n}+\mathbf{1}}=\mathbf{m u}_{\mathbf{n}}+\mathbf{c} \quad$ with $\mathrm{m} \neq 1$ and $\mathrm{c} \neq 0$

Example:

A loch contains 10 tonnes of toxic waste. Tidal action removes 50% of the waste each week, but a local factory discharges 8 tonnes of waste into the loch at the end of each week. u_{n} is the amount of waste in the loch after n weeks.

In general:

For a recurrence relation $\quad \mathbf{u}_{\mathbf{n + 1}}=\mathbf{m u}_{\mathbf{n}}+\mathbf{c}$
Provided \mathbf{m} is a fraction i.e. $\mathbf{- 1}<\mathbf{m}<1$ then a limit L exists
and we can replace u_{n+1} and u_{n} by L
$\mathrm{L}=\mathrm{mL}+\mathrm{c}$ re-arranging gives $\mathrm{L}-\mathrm{mL}=\mathrm{c}$
hence $\mathrm{L}(1-\mathrm{m})=$ and so $L=\frac{C}{1-m}$

This is an important result.

Examples:

A mushroom bed has 1000 mushrooms ready for picking. Each morning 60% of the crop are picked. Each night another 200 are ready for picking. Let M_{n} be the number ready for picking after n days.
Write down the recurrence relation, find the limit of the sequence explaining what it means in the context of this question.

Example:

Dr Sharma is studying a flock of 200 birds. Every minute 10% of the birds leave the flock and 30 birds return. Let B_{n} be the number of birds in the flock at the end of minute n.

Write down the recurrence relation, find the limit of the sequence explaining what it means in the context of this question.

It is important to be very careful in how you phrase an answer to the common question:
"Explain what the limit means in the context of this question"
The safest wording is that "The number of will settle out at around"

1. Since it will never actually get there (the limit is only achieved when n is infinite)
2. If you do not know the initial condition, then you do not know whether the sequence is decreasing down to the limit or increasing up to the limit.
3. If the multiplier is negative, then the sequence will oscillate on both sides of the limit.

Recurrence relation: $\quad \mathbf{M}_{\mathrm{n}+1}=\mathbf{0 . 4} \mathbf{M}_{\mathbf{n}}+\mathbf{2 0 0} \quad$ (60% picked $\Rightarrow 40 \%$ left $)$
multiplier m is a fraction so a limit exists i.e. M_{n+1} and $M_{n} \rightarrow L$
So $\mathrm{L}=0.4 \mathrm{~L}+200$
$\mathrm{L}-0.4 \mathrm{~L}=200$
$0.6 \mathrm{~L}=200$
$\mathrm{L}=333.33 \ldots$.

In the long term, the number of mushrooms ready for picking will settle out at around 333.
(In this case it will drop down to 333 since the initial condition was 1000 mushrooms).
The recurrence relation modelling this is: $\mathbf{u}_{\mathbf{n}+\mathbf{1}}=\mathbf{0 . 5 \mathbf { u } _ { \mathbf { n } }} \mathbf{+ 8} \quad \mathbf{u}_{\mathbf{0}}=\mathbf{1 0}$
If we write down the first few terms in the sequence we find:
$\mathrm{u}_{0}=10, \quad \mathrm{u}_{1}=13, \quad \mathrm{u}_{2}=14.5, \quad \mathrm{u}_{3}=15.25, \quad \mathrm{u}_{4}=15.625, \quad \mathrm{u}_{5}=15.8125 \ldots$.
It seems to be levelling off at 16 tonnes.
Limits: If $-1<m<1$ then u_{n+1} and u_{n} will each tend to a limit L

$$
\text { So in } \quad \mathrm{u}_{\mathrm{n}+1}=0.5 \mathrm{u}_{\mathrm{n}}+8 \quad \text { we can say } \quad \mathrm{L}=0.5 \mathrm{~L}+8
$$

and so $\mathrm{L}-0.5 \mathrm{~L}=8 \quad \mathrm{~L}(1-0.5)=8$
$L=\frac{8}{1-0.5} \quad \Rightarrow \quad L=\frac{8}{0.5} \quad \mathrm{~L}=16 \quad$ as deduced above. mushrooms).

Recurrence relation: $\quad \mathbf{B}_{\mathbf{n}+\mathbf{1}}=\mathbf{0 . 9} \mathbf{M}_{\mathbf{n}}+\mathbf{3 0} \quad$ (10% leaving $\Rightarrow 90 \%$ left $)$
multiplier m is a fraction so a limit exists i.e. B_{n+1} and $B_{n} \rightarrow L$
This time we will use the result: $L=\frac{c}{1-m}$ and so $L=\frac{30}{1-0.9} \quad L=300$
In the long term, the number of birds in the flock will settle out at around 300
(In this case it will rise to 300 since the initial condition was 200 birds)

Example:

Consider the recurrence relation: $\mathrm{u}_{\mathrm{n}+1}=0.5 \mathrm{u}_{\mathrm{n}}+100$ and $\mathrm{u}_{0}=500$
Limit will be: $L=\frac{c}{1-m} \quad$ and $L=\frac{100}{1-0.5} \quad \mathrm{~L}=200$
in this case the sequence drops down to this limit.

If we have $u_{n+1}=0.5 u_{n}+100$ and $u_{0}=50 \quad$ i.e. the initial value is 50
then the sequence would rise up to the limit.
In all cases:
Think through the implications of the questions, these are practical examples modelling real-life situations.

